Lectin-based biosensing for medicine and biotechnology

Article in Journal of Biotechnology - November 2019
DOI: 10.1016/j.jbiotec.2019.05.024

1 author:

Jaroslav Katrlík
67 PUBLICATIONS 991 CITATIONS
SEE PROFILE

Some of the authors of this publication are also working on these related projects:

Marie Curie ITN PROSENSE View project

COST Action CA16113 ClinIMARK: ‘good biomarker practice’ to increase the number of clinically validated biomarkers View project

All content following this page was uploaded by Jaroslav Katrlík on 29 November 2019.

The user has requested enhancement of the downloaded file.
processes of microorganisms to produce bread or cheese. Nonetheless, modern biotechnology provides breakthrough products and technologies to fight debilitating and rare diseases, to reduce people’s environmental footprint, to provide solutions for enhancing the world’s food supply; to use less and cleaner sources of energy, and to have safer, cleaner and more efficient industrial manufacturing processes [https://www.bio.org/what-biotechnology]. It is clear that concepts of biotechnology can spread to cover many different fields of application and so the future developments in biotechnology will be similarly wide-ranging across many fields of applications. Here we focus onto medical biotechnology and further refine our discussion onto considering aspects of genetics and nanotechnologies that could impact on the development of future biotechnologies in the medical field.

https://doi.org/10.1016/j.jbiotec.2019.05.021

OP-APR11-A06

Challenges for the implantation of symbiotic implantable medical devices

J. Alcaraz, P. Cinquin, D.K. Martin*

*Université Grenoble Alpes, SyNaBL, TIMC-IMAG/CNRS/INSEERM, UMR 5525, F-38000, Grenoble, France

Our starting point is whether the implanted device is intended to have any communication of energy or materials with the body. If this is one-way communication from the device to the body, such as for a drug delivery, the challenge is to avoid the degradation or encapsulation of the device. This implies the classical notion of biocompatibility being a property of the system that comprises the body and the implanted device, and not simply that of a material alone [Williams DF. Biomaterials, 2014, 35:10009–10014]. However, if the implanted device is intended to restore body or organ function, then it needs to mimic the two-way (duplex) communication that is required for transplanted living organs or cells. Examples of these implantable duplex communicating systems include biofuel cells or open-loop feedback devices where a molecule from the body is utilized by the duplex communicating system to produce a different material (e.g. molecule or energy) for use by the body. The challenges for such symbiotic systems are to be both biocompatible and to maintain two-way transport communication of materials. Symbiotic devices extend the classical biocompatibility concept to include this functional requirement for continuous two-way (duplex) communication of materials with the body.

https://doi.org/10.1016/j.jbiotec.2019.05.022

OP-APR11-A11

Cellulose derivatives as coatings and vehicles for controlled drug release in medical devices

A.N. Moulas1,∗, A.I. Moula2, M. Vaiou1

1Laboratory of Chemistry and Biochemistry, General Sciences Department, University of Thessaly, Greece
2Maastricht University, Faculty of Health, Medicine and Life Sciences

Cellulose, a structural component of the cell wall of plants, is the most abundant naturally occurring organic compound. It is a homopolymer of α-D-glucopyranose (glucose). Chemical modification of cellulose leads to a large number of derivatives with various physicochemical properties. Several cellulose derivatives were found to be biocompatible and hemocompatible and thus suitable for use in biomedical applications. Cellulose esters and ethers are already in use as excipients in pharmaceutical formulations. Here we present technical, in vitro and in vivo results of the use of cellulose derivatives as functional coatings and vehicles for controlled drug release in medical devices.

https://doi.org/10.1016/j.jbiotec.2019.05.023

OP-APR11-A12

Lectin-based biosensing for medicine and biotechnology

J. Katrlik

Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences

Determination of protein glycosylation may reveal changes in glycan composition occurring due to disease, aging, lifestyle or other reason. Altered glycosylation is one of disease-related markers and information on glycosylation status can significantly increase the informative value of glycoprotein biomarkers. One of such cases is cancer where changes in glycan composition of glycoprotein cancer biomarkers are promising markers for early diagnostic, prognosis, stratification and follow-up of patients. Other examples are e.g. congenital disorders of glycosylation (CDC), age-related glycosylation changes, or glycostructure of therapeutic proteins. We have developed various lectin-based biosensing systems using analytical platform such as protein microarrays, surface plasmon resonance and lateral flow assay. Another example of our work is lectin-based assay for the determination of neuraminidase activity and neuraminidase inhibitors. Although analytical assays based on lectin-glycan interactions does not allow identification of glycan structures, in configuration with microarray platform are suitable for rapid screening glycosylation changes or abnormalities making them very useful in biomarker research, diagnostics and biotechnology.

Acknowledgements

Projects APVV-14-0753, APVV-17-0239, VEGA 2/0137/18, COST CA16113, Centre for materials, layers and systems for applications and chemical processes under extreme conditions – Stage II supported by the Research & Development Operational Programme funded by the ERDF.

https://doi.org/10.1016/j.jbiotec.2019.05.024